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1 Introduction

The Price Equation is a very general way to describe selection processes. It
is often used to explore multi-level selection (which is why we are interested in
it). It looks simple but can be confusing. We will present several derivations of
the equation, and some applications, in order to get a nuanced feeling for what
the equation says.

2 Preliminaries1

We start by presenting a simple model of the evolution of a biological system,
called replicator dynamics for viability selection. This has nothing to do with
the Price equation, so you can skip it, if you want. However, we will use the
formula derived here for our �rst derivation of the Price equation. In any case,
this derivation is a good way to get your feet wet.

Assume a population with n haploid individuals. All reproduction in the model
is asexual. There are two genotypes: A and B. Generations are discrete - every-
one is born at the same time and reproduces at the same time. Reproduction
produces zygotes, that have some probability which depends on their genotype
of surviving into adulthood. This is how selection is modeled. The new gen-
eration of adults then produces the next generation of zygotes. Let p be the
frequency of the A genotype in the population at time t :

p =
number of A zygotes

n

This means that there are np zygotes of type A. So the B zygotes number
n(1− p) .

1This section follows a discussion in Richard McElreath and Robert Boyd Mathematical

Models of Social Evolution: A Guide for the Perplexed (2007). I highly recommended this
book.
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From now on, we will use the convention of using a prime to indicate the value
of variables in the next stage of evolution. Thus, p′ is the frequency of A's in
the next step.

We represent the chances of survival of zygotes of the two types by V (A) and
V (B) . For example, V (A) = 0.5 means that only half of the A zygotes survive.
Using all these notational de�nitions we can write down an expression for the
number of A adults:

number of A adults = npV (A)

This expression should be easy enough to understand. This type of calculation
will appear many times in what follows, so make sure you understand it fully.
Can you write an expression for the number of B adults? It is:

number of B adults = n(1− p)V (B)

Now that we know the number of A adults, we can calculate the frequency of
A among adults, denoted p′ :

p′ =
number of A adults

number of A adults + number of B adults

=
npV (A)

npV (A) + n(1− p)V (B)

The n's of course cancel out. The expression pV (A) + (1 − p)V (B) is simply
the average �tness in the population. Make sure you understand why! For the
most part we will try to avoid referring to population size, so when we need to
compute population averages we will base the calculation on frequencies. Since
�tness is often denoted by the letter w , and since we conventionally use a bar
to signify averages, this value is usually written w̄ . Using this notation we can
express the value of p′ like this:

p′ =
pV (A)

w̄

Now suppose that each adult, whether A or B, produces z zygotes when it
reproduces. We guess that this means that p′′ , the frequency of A among the
zygotes at t + 1will remain unchanged (since A and B reproduce at the same
rate). We can verify this by writing down the expression for p′′ :

p′′ =
z(number of A adults)

z(number of A adults) + z(number of B adults)
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The z's of course cancel out, and p′′ = p′ .We can use these expressions to
calculate the frequency p any number of generations into the future (taking
into account V , of course). Another way to represent what is going on in the
population is to look at how the frequency p changes each generation:

∆p = p′′ − p

=
pV (A)

w̄
− p

To simplify this expression we do a little algebra, starting by multiplying the
rightmost p by w̄

w̄ , which equals 1.

∆p =
pV (A)

w̄
− pw̄

w̄

=
pV (A)− p(pV (A) + (1− p)V (B))

w̄

=
p [V (A)− pV (A)− (1− p)V (B)]

w̄

=
p [(1− p)V (A)− (1− p)V (B)]

w̄

= p(1− p)V (A)− V (B)

w̄

This expression gives the change in the frequency of A as a result of selection.

It is important to try to understand it in qualitative terms. V (A)−V (B)
w̄ is the

increase of A over B. Naturally, A is expected to increase in frequency if V (A) >
V (B) while B should spread if V (B) > V (A) . What about the 1/w̄ factor? It is
not enough to know that each A has (say)m o�spring more than B. To know how
the frequency of A changes we need to factor in how many A's and B's there are.
If there are many B's, and a solitary A, for example, A's advantage is probably
dwarfed. Normalizing by the average �tness of the entire population �xes this

issue. The term V (A)−V (B)
w̄ gives the proportional increase (or decrease) of A

over B.

Note also that the advantage of A compared to B does not remain constant.
Assuming V (A) > V (B), as generations pass there are more A's relative to B's.
So their contribution to each subsequent generation is magni�ed (e.g., not only
does each A have twice as many o�spring as each B, but there are also twice
as many A's in the population). But what about the change in their frequency
(or proportion) relative to the B's? This will in fact become smaller (make sure
you understand why). In the extreme case, when p = 1 and 1−p = 0 no further
change in the frequency of A's will occur (of course), though the population will
continue to grow in size. When p = 0 and 1− p = 1 , the reverse happens - the
number of A's will not increase, no matter how large V (A) is. More generally,
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as p grows relative to 1 − p , the rate of increase in p slows down. The fastest
changes happen when p = 1−p = 0.5 . At this point the change in the frequency
of A due to natural selection is maximized. The term p(1− p) captures this. In
fact it is the variance of the two genotypes in the population. The strength on
natural selection is directly proportional to the variance in the population.

Exercises

1. If the population mean �tness is w̄, and the population size is N , what is
the population size in the next generation?

2. Given a haploid population of size N, the frequency of allele A is p, how
many individuals carry the A allele?

3. A random process involves picking on member of the population, and
checking if it is an A. Success is counted as 1 and failure as 0. The
frequency of A's in the population in p . Calculate the expected outcome of
this trial, and the variance. (This setup is called a binomial distribution.)

4. Prove that the maximal value of p(1− p) is at p = 0.5.

5. What do we mean when we say that a gene �spreads� in a population?

3 First derivation: simple version2

Let p be the frequency of allele A in the population, V (A) the average �tness of
allele A, and w̄ the average �tness of the population. As we saw in the previous
section, the frequency of A in the next step, p′ , is,

p′ = p
V (A)

w̄

Subtracting p from both sides, and multiplying by w̄ gives:

w̄4p = pV (A)− pw̄ (1)

We will now try to message the last equation so that its mathematical structure
is more explicit. Assume each individual in the population has a unique id
number, i (i will go from 1 to n). We will use the following notation:

wi is the �tness of individual i

pi is the frequency of allele A in individual i.

2This section is also based on McElreath & Boyd (2007), chp. 3.
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(What does �the frequency of an allele in an individual� mean? If organisms are
haploid pi = 1 if the organism carries A, and 0 otherwise. For diploids pi = 1 if
homozygote for A, 0.5 for heterozygotes, and 0 otherwise. In other words, �the
frequency of an allele in an individual� is the probability of transmitting the
allele to descendants, or (saying same thing in yet another di�erent way), the
proportion of the allele in the gamete pool of the individual. This number is
the weight we need to assign to i when we go over each individual to determine
p. We'll have to see later why the wording �the frequency of an allele in an
individual� makes sense.)

Using these de�nitions we can write down formulas for w̄ and p in terms of wi

and pi.

w̄ = E(wi) =
1

n

∑
wi

p = E(pi) =
1

n

∑
pi

Exercises

6. To see why this expression for p is correct, give an expression for p in
terms of ci, the number of A alleles a diploid individual i carries. What's
the relation between ci and pi?

We can also give an explicit expression for V (A), the average �tness of allele A.
To give an expression for V (A) we take the sum of the �tnesses of all individuals
weighted by the frequency of A, divided by the total number of A alleles in the
population (again it might be easier to start by writing an expression using ci):

V (A) =

∑
piwi∑
pi

We now substitute the expressions for w̄ and p into eqn. (1) giving:

w̄4p =

{
1

n

∑
pi

}
V (A)−

{
1

n

∑
pi

}{
1

n

∑
wi

}

Let's get rid of V (A) by substituting the expression for V (A) into the equation:

w̄4p =

{
1

n

∑
pi

}{∑
piwi∑
pi

}
−
{

1

n

∑
pi

}{
1

n

∑
wi

}
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We can now at last do a bit of math, and simplify the equation, giving:

w̄4p =

{
1

n

∑
piwi

}
−
{

1

n

∑
pi

}{
1

n

∑
wi

}

The �rst term of the right hand side is the average, or expectation, of piwi . The
second is the product of the expected value of the allele frequency, pi, and the ex-
pected value of individual �tness, wi. This structure reminds us of the de�nition
of covariance, cov(x,y)=E(xy)-E(x)E(y). Putting all this together we get the
Price equation that describes in very general terms the response to selection:�
�

�
�w̄4p = E(piwi)− E(pi)E(wi) = cov(wi, pi) (2)

Another way of expressing this equality is to recall that by the de�nition of the
regression coe�cient we have that cov(x, y) = var(x)β(y, x) and that cov(x, y) =
cov(y, x). Substituting into the Price equation gives:

w̄4p = var(pi)β(wi, pi)

This expression shows how the evolutionary change depends on the variance in
allele frequencies and the regression of �tness on the genotype (i.e., on how well
the genotype predicts �tness). The role of selection is captured by the regression
coe�cient of �tness on allele frequency (β(wi, pi) ), that is on how well the allele
frequency in an individual predicts the individual's �tness. It helps to divide
both sides of equation (2) by w̄ giving:

4p = cov(ωi, pi)

Instead of absolute �tness wi, here ωi is the relative �tness. Put this equation
into words! (�The change in frequency....�)

Notes:

1. The derivation started from an a haploid model. The result, it turns out,
applies to any ploidy (diploid, haplodiploid).

2. A nice property of the last expression is that var(pi)and β(wi, pi) can
potentially be empirically determined or estimated.

3. Eqn. (2) is not the full Price equation: An important term is missing.
But it is still important to understand what this equation tells us about
selection. We'll understand the simplifying assumptions later.
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4 Full derivation3

We now derive the full Price equation from more generic assumptions. In the
process we will see how selection can operate on many levels.

We consider a population of �particles� of many di�erent types. We make no
assumptions about the particles, only that they replicate (so they can refer to
�genes� or alleles for example). The particles are grouped into subpopulations
labeled g = 1, 2, 3...Within each subpopulation the particles themselves are la-
beled i = 1, 2, 3...The ith particle in group g is labeled ig and wig copies of it are
made in a time unit. We will follow the fate of one kind of particles (e.g., one
allele), which we will denote S. We further de�ne the notation in the following
table:

Subpopulation g Entire population
Number of particles ng N

Frequency of S pg p
Mean number of copies wg = 1

ng

∑
i wig w̄ =

∑
i
ng

N wg

We will add a prime to each variable to denote the value of the variable in the
next generation. The frequency of S after on generation is:

p′ =
∑
g

n′gp
′
g

N ′

This is simply the sum of the number of S individuals in each group, divided by
the population size.

Note that n′g = wgng and N ′ = w̄N . Substituting we get:

p′ =
∑
g

wgng
w̄N

p′g

This equation shows us how to calculate the change in the frequency of S in the
entire population by tallying what happens in each subpopulation (indicated by
g).

Substract p from both sides and multiply by w̄ to get:

w̄4p =
∑
g

ng
N
wgp

′
g − pw̄ =

∑
g

ng
N
wgp

′
g − p

{∑
g

ng
N
wg

}
3McElearth & Boyd (2007), chp. 6.
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This is nasty, so we add and subtract
∑

g
ng

N wgpgto the last expression, and
rearrange::

w̄4p =

(∑
g

ng
N
wgpg − p

∑
g

ng
N
wg

)
+

(∑
g

ng
N
wgp

′
g −

∑
g

ng
N
wgpg

)

Simplify the expressions in parenthesis:

w̄4p =
∑
g

ng
N
wg(pg − p) +

∑
g

ng
N
wg(p′g − pg)

Recall that the expectation of a random variable is essentially the same thing
as a weighted average, which is what we have in the last equation where each
subpopulation g is weighted by its relative size. So another way to write the
equation is:

w̄4p = E (wg(pg − p)) + E
(
wg(p′g − pg)

)
Reacall that cov(x, y) = E(xy) − E(x)E(y) = E {x (y − E(y))}. This means
that E (wg(pg − p)) = cov(wg, pg). So, �nally, the general form of the Price
Equation:�
�

�
�w̄4p = cov(wg, pg) + E (wg4pg) (3)

What does this mean? The �rst thing we notice is that the evolutionary change
is composed of two elements: a covariance term, and an expectation term.
The �rst term is the inter-group term; the second the intra-group term. The
covariance is between the frequency of the allele S in g and the mean �tness of
individuals in g. This we have already seen in the simple version of the equation,
and is easy to understand. This is about change that is directly due to selection.
The better the trait predicts �tness the more quickly it will spread.The second
term (the expectation term) is a little harder to understand. It tells us something
about the transmission of group g (inheritance). The product is of the average
�tness in group g times the change in frequency of the S allele in group g. It will
take us awhile to understand exactly what this expectation means in biological
terms.

It is easy to see that if the frequency of S in each group doesn't change (4pg = 0)
the expectation term disappears and we are back to the simple version of the
equation we initially developed. When is this the case? Suppose each subpopula-

tion is a single individual organism (so we have a population of individuals, each
itself a population of genes). If organisms reproduce asexually 4pg = 0, since
each organism transmits its exact genetic repertoire to its descendants (assum-
ing no mutations!). Changes due to selection happen because of what happens
to individuals, not because what happens to genes inside individuals. We now
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see that the same holds if the organisms are sexually reproducing as well: the
frequency of the allele in the gametes should roughly equal its frequency in the
parents. This is what we assumed in the �rst derivation.4

When is this not true? 4pg 6= 0 if the frequency of S in o�spring is di�erent
than in the parent. This will happen in situations where some alleles can get
more or less than their share of the �bounty.� For example, an allele might have
a frequency of 0.5 (i.e., the individual is a heterozygote), but instead of being
in only half the gamete manage to sneak into all of them, so p′g = 1. This can
happen due to meiotic drive and mutations. [What about assortative mating?]
The second thing to keep in mind is that the equation shows us how to calculate
the response of S in the entire population to selection by tallying what happens
in each subpopulation..

Multi-Level Selection Comes to the Scene

Consider again eqn. (3):

w̄4p = cov(wg, pg) + E
(
wg4pg

)
The two underlined expressions look almost the same. The left one is about the
whole population. The underlined term on the right is the average �tness in
group g times the change in frequency of the allele in group g. But we can use
the Price equation to calculate the underlined value on the right hand side, since
the Price equation applies to any population whatsoever. So we just expand
eqn. (3) by substituting the right hand side of the Price equation into the
expectation term, but this time the groups that make up each subpopulation g
are the individuals ig :

w̄4p = cov(wg, pg) + E
(

cov(wig, pig) + E(wig4pig)
)

If we again assume there is no meiotic drive and mutations can be ignored (at
the bottom level), we can simplify:

w̄4p = cov(wg, pg) + E
(

cov(wig, pig)
)

4There are nuances here that might be confusing: If each group is an individual, it is
natural to think about all its descendants making up g′, which will have the same p′g . But in
the diploid case, if each g is an individual, sexual reproduction means we need to keep track of
two parents: if we put all the descendants of g in g′ we'll end up counting them twice (for the
father as well as the mother). In the general case this is not a problem (can you see why?),
and the frequency of the allele in o�spring should match the parents. We'll have to say more
about these bookkeeping issues later. You may also be wondering about a more fundamental
issue, namely that the model does not explicitly deal with reproduction (sex) between groups.
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Formally this is simple, but what does it actually mean? This expression shows
us how to calculate the response to selection, by �rst averaging across individuals
within groups (to get the second cov), and then across the groups that make up
the population (to get the expectation). Earlier we expressed the same quantity
while ignoring the population structure. The numerical value remains the same,
of course. We can tell that we are now thinking about two levels of organization
just by looking at the second term on the right hand side (the expectation term).
If you try to think how such a value is calculated you immediately see you need
two levels, since you need multiple cov values, to take the average of. In this
case we assumed that we have a population of subpopulations of individuals
(each ig denotes a single individual comprised of genes; see �gure 1 ). But we
can of course repeatedly expand the equation for any number of levels, halting
when we take the expectation term to be zero.

Figure 1: Population structure

Group selection

Let's express the two-level Price equation using regression coe�cients:

w̄4p = cov(wg, pg) + E
(

cov(wig, pig)
)

becomes

w̄4p = var(pg)β(wg, pg) + E(var(pig)β(wig, pig))

Recall that the regression coe�cients tells us the e�ect of selection. By expand-
ing the Price question we now see the e�ect of selection at each of the two levels.
The left term refers to selection between groups (aka group selection), and the
right term, which we are already familiar with, is concerned with selection be-
tween individuals. Using this decomposition we can try to think qualitatively
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about what happens when selection operates simultaneously on two levels. If
having an allele is bene�cial to individuals, and having many copies of the alle-
les is bene�cial for a group, clearly selection on both levels will favor the allele.
This will usually be the case: if being taller is better, probably having many tall
members is good for the group (see question 7). The two beta expressions will
be positive, and the e�ect of selection is additive. Try to �gure out which term
is likely to be bigger than the other. It may also be the case that there is no
selection between the groups; again it is clear that what bene�ts individuals will
spread. In which biological situations are the two terms going to have opposite
signs? When, for example, is an allele detrimental to the individuals carrying
it, while providing a bene�t to the group (thus making the �rst beta positive
and the second negative)? We need a trait that makes the group ��tter� at the
expense of individual organisms. When this happens we talk about biological

altruism. In the simplest terms, altruism happens when individuals reduce their
own �tness by helping others, thereby increasing the �tness of groups with al-
truists compared to groups with less altruists. Since in such cases the terms will
have opposite signs, what determines whether the trait will spread will be their
relative magnitude.

The second thing the equation tells us is that for selection to be e�ective there
has to be variance. If var(pg) is very small, the �rst term disappears. Put into
words: If groups have similar frequency of the altruism allele, altruism will not
evolve.

Exercises

7. Return to the de�nitions and explain in your own words what wg means.
Does it make sense to call this group �tness?

8. So some groups fare better because of altruists. Or is it individuals in
those groups that fare better? Explain how you interpret β(wg, pg).

9. Does the Price equation say anything about selection between groups?
What does selection between groups mean?

10. Think of the inheritance graph. Is there group level inheritance?

5 One more time5

You think you had enough? How about deriving the Price equation one more
time? We will �rst write the equation (in its simple and full forms) using
di�erent symbols, and describe it slightly di�erently. This time we will be
more explicit about what constitutes a group, and how groups change between
generations. Don't worry, we are still talking about the same thing. Keep

5The derivation in this section is from Frank (1995).
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thinking of the form of the equations, and the biological processes they describe.
So here is the simple form one more time:

w̄4z̄ = cov(w, z) = β(w, z)var(z)

where w as usual is �tness and z is a quantitative character (e.g. the length of
the proverbial gira�e's neck). What this formulation says is that the change in
the average value of the character, 4z̄, depends on the covariance between the
character and �tness. We already know that this is the same as the regression
coe�cient of �tness on the character, multiplied by the variance in the character.
Compare this with the derivations so far: There we talked about frequency of
alleles, here we assume a quantitative trait, with continuous values.6 Now we
can do something nifty. Assume the trait we want to track is the �tness of the
individual, w. So z = w. Surely we can do that, since the equation applies to
any quantitative trait. Here is what we get:

w̄4w̄ = cov(w,w) = β(w,w)var(w)

The beta coe�cient is of course 1. This means that the change in mean �tness
is proportional to the variance in �tness. This is a remarkable result, which
we glimpsed a few times already but is worth putting in italics: The change in

mean �tness depends on the variance in �tness in the population. This is result
is called the fundamental theorem of natural selection and is attributed to R.A.
Fisher.7

We of course already know that the equation as written above is incomplete. It
misses those pesky genetic e�ects captured by the expectation term in the full
equation. So let's get cracking.

Assume a population, where each element is labeled by index i. Each element
has the character zi . In contrast with what we did before, here i is not unique.
Many elements can be labled i. The frequency of elements labeled i in the
overall population is denoted qi. The average value of z in the population is∑
qizi(this is simply the arithmetic mean).

A descendant population has the traits z′i and and frequencies q′i.The change in
average character value is:

4z̄ =
∑

q′iz
′
i −
∑

qizi (4)

But who exactly are the individuals q′i? By writing down the last equation we
have not identi�ed them! We simply de�ned some values and wrote down a
formula for their arithmetic di�erence. Calling this 4z̄ is a little suspicious!

6So which formulation is more general?
7But this is not what he meant. Price explained why. Fisher's theorem deals only with

the portion of �tness that depends on additive genetic variance, and excludes dominance,
epistasis, and other genetic e�ects. See Frank (1995).
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So here is the tricky part: We de�ne q′i to be the frequency (proportion) in the
second population of the descendants of the elements i in the parent population.
Let wi be the �tness of the i elements (the mean �tness of group i, if you will).
This is just the contribution of each i parent to the descendant population, or
the average number of descendants of i elements. Using these de�nitions we can
express q′ias

q′i =
qiwi

w̄
=

qiwi∑
qiwi

where w̄ is the mean �tness of the parent population,
∑
qiwi , same as in the

previous section. (If you are not sure why this works, check that q′i calculated
in this way is indeed the proportion of the descendants of i in the second gen-
eration.)

The next tricky part is that we de�ne z′i in a similar way: The i refers to the
parent population. But how can that be you surely say: The descendants of i
elements do not necessarily all have the same value for the trait! Quite right:
z′i will refer to the average character value of the descendants of the elements
i. Put di�erently, but amounting to the same thing, collect all the elements in
the second generation that have the same phenotype, yj . We then go over each
of these collections, and sum the fraction of its members that originated from
i . This amounts to weighing each element in the descendant population that
derives from i by the fraction of the total �tness of i that it represents. Putting
this in symbols, denote by qji the fraction of the i-th parental subpopulation
descendants that end up having the phenotype yj . Note that

∑
j qji = 1 . Using

this notation we can express z′i thus:

z′i =
∑
j

q′jiyj

And the average trait value in the descendant population is:

z̄′ =
∑

q′iz
′
i

We de�ne 4zi = z′i − zi.

Equation 4 is true with these de�nitions of q′i and z
′
i. So by substituting and

rearranging:

4z̄ =
∑

qi(wi/w̄)(zi +4zi)−
∑

qizi =
∑

qi(wi/w̄− 1)zi +
∑

qi(wi/w̄)4zi

Using standard de�nitions we can now get to the the full Price equation (�gure
2 gives a visual representation of the process we analyzed algebraically):
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Figure 2: Scenario represented by the Price equation (from Frank, 1995)

�
�

�
�w̄4z = cov(wi, zi) + E (wi4zi)

The �rst term, as we noted before, is change due to selection. The second is the
change due to transmission. The covariance captures the change in the charac-
ter caused by di�erential reproductive success (does anything about causality
follow from the derivation?), while the expectation term is a �tness weighted
measure of change in character values between ancestor and descendant. The
second term is easier to understand in this formulation than it was before. The
expectation is an average of the change in the character from parents to o�-
spring. Remember that for each parent, ∆zi is the average change in character
across all i's o�spring. Now we take a (weighted) average of these values across
the population. This tells us whether there is transmission bias. If, for the en-
tire population, the average trait among o�spring equals the trait value in their
parent, the expectation term vanishes. If transmission is highly non-reliable,
however, a strong correlation betwen trait value and �tness may still not be
enough for natural selection to a�ect the trait.

6 And another

Now that we have seen these derivations worked out in excruciating detail, let's
go over the derivation in Evolution and the Levels of Selection (what follows
reproduces Box 1.1 in the book)
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∆z̄ = z̄0 − z̄

=
1

n

∑ wi

w̄ i
z′i −

1

n

∑
i

zi

Multiplying both sides by w̄ gives:

w̄∆z̄ =
1

n

∑
i

wiz
′
i −

1

n

∑
i

w̄zi

Using the equality z′i = zi + ∆zi to substitute for z′i gives:
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∑
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Applying the standard statistical de�nitions of covariance and expectation gives:

w̄4z = cov(wi, zi) + E (wi4zi)

7 Applying the Price Equation

We will see many examples of applying the Price equation. Here is one worked
out example that is relevant to the evolution of altruism. One of the paradig-
matic explanations for the evolution of altruism was Hamilton's analysis of
inclusive �tness and kin selection. In the most simplistic terms the idea is that
it �pays� in evolutionary terms to give up some of your �tness in order to help
others that are closely related to you (and hence carry many of the same genes).
Provided, that is, that the cost to you is less than the total bene�t they receive.
This conclusion is summarized in Hamilton's Rule which states that altruistic
behavior (genes) will evolve if:

rb > c

where r is the coe�cient of relatedness, namely the chance that the recipient and
donor share an allele due to common descent, b is the bene�t to the recipient,
and c is the cost to the donor.
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We will derive this rule from the Price equation, which describes selection pro-
cesses more generally, by adding several conditions that together make Hamil-
ton's rule true.8

Additive �tness e�ects

Our �rst added assumption is that �tness e�ects are additive. Each time you
receive help you get the same bene�t (and similarly for costs). There are no
diminishing returns. Formally:

wi = w0 + yib− hic

w0 is the baseline �tness all organisms share, yi is the probability of i receiving
aid, and hi is the probability of i giving aid.

Now we take this expression and substitute it into the (simple) Price equation
from section 3:

w̄4p = cov(w0 + yib− hic, pi)

Using the properties of covariance, we can rewrite this as:

w̄4p = cov(w0, pi) + bcov(yi, pi)− ccov(hi, pi)

Since w0 is constant the �rst term is zero, which leaves us with:

w̄4p = bcov(yi, pi)− ccov(hi, pi)

For altruism to spread we require that ∆p > 0 , which will happen if,

bcov(yi, pi) > ccov(hi, pi)

Or,

b
cov(yi, pi)

cov(hi, pi)
> c (5)

This looks just like Hamilton's rule, except that r is missing, and instead we have
the ratio of covariances. This expression is very useful: It tells us when a gene for
altruism will evolve. And it does it without saying anything about relatedness
or common descent. (Try to put into words the meaning of the mathematical
expression!) This might be a good place to stop. But it is not Hamilton's rule
as we know it. For that we need to add several more assumptions.

8This derivation is from McElreath & Boyd (2007), chapter 3.
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Additive genetics

Our next assumption is that the likelihood of providing help is a linear function
of the number of altruism alleles. Essentially we are assuming an ultra simple
genotype-phenotype mapping (dominance, for example, is ruled out). Ouch!

hi = a+ kpi

In exactly the same way w0 gave the baseline �tness, a gives the baseline level
of helping.

What's the likelihood of individual j helping out i ? It is simply,

yi = a+ kpj

Using these:

cov(hi, pi) = cov(a+ kpipi) = kcov(pi, pi)

We know that cov(x, x) = var(x) , so we conclude that,

cov(hi, pi) = kvar(pi)

The same reasoning applies for the recipient so,

cov(yi, pi) = kcov(pj , pi)

Substituting these into (5) gives:

b
kcov(pj , pi)

kvar(pi)
> c

By using the de�nition of regression coe�cient, this inequality reduces to,

bβ(pj , pi) > c (6)

This is Hamilton's rule, under the assumptions of additive �tness e�ects and
additive genetics.

What does this inequality mean? It means that the spread of the altruistic
allele depends on how well pi predicts pj . A little re�ection should make it clear
that this has something to do with the frequency p . But a little more re�ection
shows that even if p is high in the population, increasing the likelihood that
both individuals will have genotypes with high p , this does not increase the
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predictive value of pi. What we need in order for β to be great than zero is
that there be positive assortment � essentially that helpers tend to help other
helpful individuals. There are various scenarios in which this will be the case,
not all of them depending on common descent, which is what Hamilton's rule
talked about. For that we need yet another assumption.

No selection for altruism (!)

To �nd out what is required for Hamilton's rule to hold, given the previous
results, we need to �gure out when does β(pj , pi) equal r , the coe�cient of
relatedness.

We de�ne r as the fraction of alleles identical by descent in i and j . To calculate
how well pi predicts pj (this is the regression coe�cient), we need to �nd out two
things in addition to r : (1) The fraction of the alleles that the two individuals
share by common descent that are altruism alleles; (2) The fraction of the alleles
not identical by descent that are altruism alleles. These numbers allow us to
give an expression predicting pj based on pi.

The second of the two numbers we need is easy to �gure out: It is simple the
frequency of altruism alleles in the population, p .

It is a little tricky to �gure out the �rst number, the fraction of the alleles that
the two individuals share by common descent that are altruism genes. If r of
j's genes are identical by descent with i's, and i does not have any altruism
allele, then clearly the fraction of the alleles that the two individuals share by
common descent that are altruism genes is zero. Similarly, If r of j's alleles are
identical by descent with i's, and i is homozygous for the altruism allele, clearly
the fraction of the alleles that the two individuals share by common descent
that are altruism alleles is one (since all the alleles that the individuals share
must by altruism alleles, the only kind i has to �share�) . In the heterozygous
case, where pi = 0.5 , it turns out that the fraction of the alleles that the two
individuals share by common descent that are altruism alleles is 0.5 (can you
see why?). Taken together, this means that the second number we needed to
factor in in simply pi . Something in the reasoning in this paragraph should not
smell kosher. Can you tell what? Call this the goat.

Combining all these numbers together and doing some algebra allows us to
calculate the regression coe�cient β(pj , pi) we need from equation (6) using
r , pi , and p . Simplifying the expression we get we �nd out that β = r
. Substituting in equation (6) gives that standard version of Hamilton's rule,
br > c .9

9Here are the details we skipped over.
It is not hard to show that
β(pj , pi) =

E(pj |Pi)−p

pi−p

From the discussion in the text we get:
E(pj |pi) = rpj(IBD) + (1− r)pj(not−IBD)t = rpi + (1− r)p

18



Great! We managed to derive Hamilton's rule. But what about the goat? It is
time to take the goat out!10

The smelly goat is the assumption that the fraction of the alleles that the two
individuals share by common descent that are altruism genes is equal to pi.
This works only if altruism alleles simply di�use from generation to generation
according to Mendel's laws. This is true only if there is no selection for al-

truism. If there is favorable selection, the ratio would increase, and if there is
selection against it should decrease (that's what selection is all about!). So in
deriving Hamilton's rule for the evolution of altruism we assumed no selection
for altruism! That's kind of underhanded, don't you think?

In fact, this assumption is acceptable, provided we make some other assumptions
(do you see a pattern here?). If selection is weak enough, its a�ects can be
ignored when computing r for individuals that are close relatives. Hamilton's
rule is an approximation that holds under these assumptions (and the earlier
assumptions we made abut additive �tness a�ects and additive genetics, which
can also be seen as simplifying assumptions).

Exercises

11. Charlesworth's Paradox: Consider a species of bird in which o�spring
can decide to stay and help their parents care for next season's o�spring, or
to go out and establish their own nests. A situation arises each generation
allowing an individual to sacri�ce its own life to save the lives of its four
younger full siblings (b = 4; c = 1; r = 0.5). According to Hamilton's rule
this altruistic behavior should evolve. But clearly it cannot: an individual
with the mutation will sacri�ce itself, and the allele will be destroyed.
Discuss.

12. Does r tell us how closely related (genetically) two speci�c individuals
are?

8 Concluding Remarks

Several things make the Price equation potentially confusing. The �rst stum-
bling block if you are not accustomed to this sort of analysis is the pervasive use

Substituting this expression into the expression for β and simplifying, we conclude that
β = r.

10What are all these goats doing here? There is a famous Jewish joke... This guy comes
to the rabbi and says that his house is too crowded, what with his wife and twelve kids, and
only one room, with a leaky roof. Do you have a goat, the rabbi asks. Well sure, the guy
answers. Good, says the rabbi, take the goat inside to live with the family, and come back
in two weeks time. The guy comes back after two weeks, smelly and not too happy. Rabbe,
it is much much worse, he says. Now take the goat back out, commands the rabbi. The guy
comes back after another week. Rabbi, he says, the house is so spacious now that the goat is
gone.
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of frequencies rather than the number of individuals carrying a gene or allele.
By now you should �ll comfortable with this approach, and the basic formulas
for averages and so on should not look alien.

Natural selection changes the frequency of alleles a population so it is natural to
use frequencies when writing down expressions that describe this evolutionary
change. This is one manifestation of the frequently made assertion that natu-
ral selection is a population level process the understanding of which involves
�population thinking.� The Price equation is one illustration of the centrality of
statistical vocabulary to our understanding of evolutionary processes. Express-
ing our results using frequencies allows us for the most part to ignore population
size when expressing the evolutionary relationships. We do not need an extra
parameter giving the population size. When in doubt, try to refer to the pop-
ulation size explicitly. Note, however, that throughout we assumed that the
population size is big enough so that sampling errors (often referred to as drift
in the biological context) can be ignored.

Another thing that can be confusing is the move from expressions that explic-
itly refer to averaging processes of summing the number of descendants etc. to
expressions that employ the notions of expection, variance and covariance. This
is especially di�cult if you do not have a qualitative feeling for the meaning of
these concepts (think: average, spread, and similarity). Thinking of regression
coe�cients (and hence, prediction) rather than covariance can help. The move
from expressions about explicit sums to expressions that utilize the statistical
functions can also be confusing, since the latter express relationships that ap-
ply to whole groups as single entities. When in doubt, make sure you know
which groups each statistic refers to and the number of �nesting� levels of the
population.

Two observations to complete this discussion. The Price equation deals with
any selection process. Indeed, we can de�ne selection using it. It says noting
in particular about biological or genetic evolution, and is not tied to any par-
ticular biological scenario. This gives it immense power, but also means that
it is quite possible to apply it incorrectly to the real world. This leads us to
the second and �nal observation. The Price equation is analytic. It is not a
synthetic proposition. We derived it based on straightforward de�nitions, and
universal mathematical principles. The equation simply provides a useful way
of interpreting the meaning of the straightforward de�nitions we started from.
This however is not the case once you put the equation into words, thereby
interpreting the mathematical relationships. If you merely say: �I de�ne 'selec-
tion' to be the covariance blah blah blah,� you might be safe. If you say: �the
covariance blah blah blah is selection,� you are making a claim with empirical
content. More fundamentally, the belief that the rules of probability theory and
statistics, or any other mathematical manipulation, describe the actual wold is
synthetic.11

11This observation is emphasized by McShea & Brandon (2010).

20



9 Answers

1. w̄N

3. The variance is p(1− p).

4. Consider the function p(1−p) . To �nd the maximum we take the derivative,
and determine where it is equal to zero. This gives the equation 1 − 2p = 0
which is satis�ed when p = 0.5 . To make sure that this is indeed a maximum
we can take the second derivative, or simply note the shape of the paraboa (i.e.,
that it is upside down). .

5. We mean that the frequency of the gene increases relative to other genes
(more correctly, alleles).

6. ci = 0 for aa individuals, 1 for Aa and aA, and 2 for AA individuals.
The total number of A alleles in the population is

∑
ci. The total number of

alleles in the population is 2n (because of diploidy). Combining the two we get

p =
∑

ci
2n = 1

n

∑
ci

2 = 1
n

∑ ci
2 = 1

n

∑
pi

11. Here we have strong selection against altruism, nullifying the assumption
we made in deriving Hamilton's rule.

12. No. We saw that r is a statistic: it summarizes information about the pop-
ulation, namely how well does donor genotype predict the recipient's genotype.

21


